228 research outputs found

    On the feasibility of RADAR detection of high-energy neutrino-induced showers in ice

    Full text link
    In this article we try to answer the question whether the radar detection technique can be used for the detection of high-energy-neutrino induced particle cascades in ice. A high-energy neutrino interacting in ice will induce a particle cascade, also referred to as a particle shower, moving at approximately the speed of light. Passing through, the cascade will ionize the medium, leaving behind a plasma tube. The different properties of the plasma-tube, such as its lifetime, size and the charge-density will be used to obtain an estimate if it is possible to detect this tube by means of the radar detection technique. Next to the ionization electrons a second plasma due to mobile protons induced by the particle cascade is discussed. An energy threshold for the cascade inducing particle of 4 PeV for the electron plasma, and 20 PeV for the proton plasma is obtained. This allows the radar detection technique, if successful, to cover the energy-gap between several PeV and a few EeV in the currently operating neutrino detectors, where on the low side IceCube runs out of events, and on the high side the Askaryan radio detectors begin to have large effective volumes

    The air shower maximum probed by Cherenkov effects from radio emission

    Full text link
    Radio detection of cosmic-ray-induced air showers has come to a flight the last decade. Along with the experimental efforts, several theoretical models were developed. The main radio-emission mechanisms are established to be the geomagnetic emission due to deflection of electrons and positrons in Earth's magnetic field and the charge-excess emission due to a net electron excess in the air shower front. It was only recently shown that Cherenkov effects play an important role in the radio emission from air showers. In this article we show the importance of these effects to extract quantitatively the position of the shower maximum from the radio signal, which is a sensitive measure for the mass of the initial cosmic ray. We also show that the relative magnitude of the charge-excess and geomagnetic emission changes considerably at small observer distances where Cherenkov effects apply

    Constraints and prospects on gravitational wave and neutrino emission using GW150914

    Full text link
    The recent LIGO observation of gravitational waves from a binary black hole merger triggered several follow-up searches from both electromagnetic wave as well as neutrino observatories. Since in general, it is expected that all matter has been removed from the binary black hole environment long before the merger, no neutrino emission is expected from such mergers. Still, it remains interesting to test this hypothesis. The ratio of the energy emitted in neutrinos with respect to gravitational waves represents a useful parameter to constrain the environment of such astrophysical events. In addition to putting constraints by use of the non-detection of counterpart neutrinos, it is also possible to consider the diffuse neutrino flux measured by the IceCube observatory as the maximum contribution from an extrapolated full class of BBHs. Both methods currently lead to similar bounds on the fraction of energy that can be emitted in neutrinos. Nevertheless, combining both methods should allow to strongly constrain the source population in case of a future neutrino counterpart detection. The proposed approach can and will be applied to potential upcoming LIGO events, including binary neutron stars and black hole-neutron star mergers, for which a neutrino counterpart is expected.Comment: 8 pages, 2 figures. In Proceedings of the 35th International Cosmic Ray Conference (ICRC2017), Busan, Kore

    Analytic Calculation of Radio Emission from Extensive Air Showers subjected to Atmospheric Electric Fields

    Get PDF
    We have developed a code that semi-analytically calculates the radio footprint (intensity and polarization) of an extensive air shower subject to atmospheric electric fields. This can be used to reconstruct the height dependence of atmospheric electric field from the measured radio footprint. The various parameterizations of the spatial extent of the induced currents are based on the results of Monte-Carlo shower simulations. The calculated radio footprints agree well with microscopic CoREAS simulations.Comment: Contribution to the proceedings of the ARENA conference, Groningen, The Netherlands, June 7-10, 201

    What the radio signal tells about the cosmic-ray air shower

    Get PDF
    The physics of radio emission from cosmic-ray induced air showers is shortly summarized. It will be shown that the radio signal at different distances from the shower axis provides complementary information on the longitudinal shower evolution, in particular the early part, and on the distribution of the electrons in the shower core. This complements the information obtained from surface, fluorescence, and muon detectors and is very useful in getting a comprehensive picture of an air shower
    • …
    corecore